Closing Wed: HW_2A, 2B Closing Fri: HW_2C Please visit office hours 1:30-3:00pm in PDL C-339

5.5 The Substitution Rule

Entry Task (Motivation):

1. Find the following derivatives

Function	Derivative?
$\cos \left(x^{2}\right)$	
$\sin \left(x^{4}\right)$	
$\mathrm{e}^{\tan (x)}$	
$(\ln (\mathrm{x}))^{3}$	
$\ln \left(\mathrm{x}^{4}+1\right)$	

2. Rewrite as integrals:

$$
\begin{array}{r}
d x=\cos \left(x^{2}\right)+C \\
d x=\sin \left(x^{4}\right)+C \\
d x=\mathrm{e}^{\tan (x)}+C \\
d x=(\ln (\mathrm{x}))^{3}+C \\
d x=\ln \left(\mathrm{x}^{4}+1\right)+C
\end{array}
$$

3. Guess and check the answer to:
$\int 7 x^{6} \sin \left(x^{7}\right) d x=$

Observations:

1. We are reversing the "chain rule".
2. In each case, we see "inside" = a function inside another "outside" = derivative of inside

To help us mechanically see these connections, we use what we call:

The Substitution Rule:

If we write $u=g(x)$ and $d u=g^{\prime}(x) d x$, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Aside (you do not need to write this)

Some theory

Recall:

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(g\left(x_{i}\right)\right) g^{\prime}\left(x_{i}\right) \Delta x
$$

If we replace $u=g(x)$, then we are "transforming" the problem from one involving x and y to one with u and y.

This changes everything in the set up. The lower bound, the upper bound, the width, and the integrand!

Recall from Math 124 that

$$
g^{\prime}(x)=\frac{d u}{d x} \approx \frac{\Delta u}{\Delta x}
$$

(with more accuracy when Δx is small)

Thus, we can say that

$$
g^{\prime}(x) \Delta x \approx \Delta u
$$

In other words, if the width of the rectangles using x and y is Δx, then the width of the rectangles using u and y is $g^{\prime}(x) \Delta x$.

And if we write $u_{i}=g\left(x_{i}\right)$, then

$$
\begin{aligned}
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(g\left(x_{i}\right)\right) g^{\prime}\left(x_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f(u) \Delta u \\
& =\int_{g(a)}^{g(b)} f(u) d u
\end{aligned}
$$

Here is a visual example of this transformation

$$
\int_{0}^{1} x^{2}\left(1+2 x^{3}\right)^{4} d x
$$

Using $u=1+2 x^{3}$ and $d u=6 x^{2} d x$, we get

$\int_{1}^{3} \frac{1}{6} u^{4} d u$

